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Computation of the electron distribution function f(U) turns out to be necessary in 
solving a number of problems associated with determining the efficiency of processes in a 
plasma. The electron distribution function is described by an integro-differential equation 
whose solution is of known difficulty. A number of numerical solution methods [1-4] as well 
as an analytical investigation of the electron distribution function [5-8] exist. However, 
the search for simpler methods of solution permitting the fundamental electron energetic char- 
acteristics to be found with minimal time expenditure and satisfactory accuracy continues to 
be an urgent problem. 

An approximate analytic expression is found in this paper for the electron distribution 
function possessing high simplicity and clearness and permitting calculation of f(U) upon 
satisfaction of definite conditions with high accuracy. In those cases when the accuracy 
turns out to be inadequate, this expression can be used as the initial approximation in an 
iteration process. The solution is found by taking into account inelastic collisions of the 
first kind. Moreover, an expression is obtained for the electron distribution function by 
taking account of collisions of the second kind which, although it is indeeed not explicit, 
permits easy evaluation of f(U). 

In the quasistationary case of a spatially homogeneous gas and an almost isotropic elec- 
tron velocity distribution function as well as a small degree of ionization, the kinetic equa- 
tion for the isotropic part of the electron velocity distribution function (expressed as a 
function of the energy) with inelastic collisions taken into account has the form [2] 

U+U~ 
i E~Ue ~ df df / + k T ~  + ~  [ NUQ~(U)/(U)dU, (1) 
3 NOt~ d---ff + U~NQts f + kT-fu- + NSrcUQrc ~ 

where E is the electrical field intensity, U, e, m are the electron energy, charge, and mass, 
M is the molecule mass, k is the Boltzmann constant, N is the molecule density, T is the gas 
temperature, U i is the energy lost by an electron in inelastic collisions with molecules, Qts 
is the transport section of electron scattering by a molecule, Qi is the inelastic interaction 
section, Src is a rotational constant, Qrc is defined by a formula analogous to [9, i0] 

2 N~ U~,~+ n 
Qrc=~ N arckT O~3+n" 

i n 

Here N i is the molecule density at the i-th rotational level, Ui,i+n, Qi,i+n are the energy 
and section of the transition from the i-th rotational level to the (i + n)-th. 

The first component describes the electron energy increase in an electrical field, the 
second is the energy loss in elastic collisions, the third is the loss by excitation of mole- 
cule rotational levels in a diffusion approximation [I, i0] and under the assumption of an 
equilibrium molecule distribution over rotational levels, the fourth is energy transmission 
to the vibrational and electron degrees of freedom, as well as the energy loss by ioniza- 
tion with collisions of the first kind taken into account. 

t E2Ue 2 ~ 2m 
Let us introduce the notation A = 3 NQt s q- .,. U2NQtskT + ercUNQrckT~ B = -~- U2NQ.ts+ 

NercUQrc, C i = NUQ i, which is used to give (i) the form 
U+U i 

d/ ~ (2) A ~ + B / +  ~ C~ (U')/(U') dU' = O. 
U 
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We shall seek the solution f(U) in the form 

w h e r e  d f / d U  = - Y ( U ) f ( U ) .  L e t  u s  n o t e  t h a t  t h e  f u n c t i o n  Y(U)  i s  a l w a y s  p o s i t i v e ,  a s  i s  s e e n  
from (2), since A, B, and C i are positive. We use this later. 

Let us show that if Y(U') >> I/U i in the domain U < U' < U + s, where e satisfies the 
inequality I/Y(U) << g < U i and the relative change in ~he functions Y(U) and Ci(U) is small, 
then the approximation 

U + U  i 

.f c~ (u') / (o") dU' ..~ C~ (U) / (U)/r (U) ( 3 ) 
U , 

is valid. In fact, if Y(U) is large, then f(U) is a fast dropping function and the main con- 
tribution to the integral will be given by the domain of the dimension r Therefore 

.t" C~(U')/(U')dU',-~f(U) C~(U + U')exp -- ' Y(U")dU" dU" ~ , ,  
U 0 - 

8 

"" ] (U) Ci (U) J" e -y(U)U' d U ' - -  f (u) c (u) (t - -  e -Y(U)~) ~ / (U) C (U)/Y (U). 
"~ Y (u) 

0 

The approximation (3) permits conversion of the integro-differential equation (2) into an al- 
gebraic equation in Y(U): AY 2 - BY - C = 0, C = ZCi, which has two roots, positive and nega- 
tive. As mentioned above, Y(U)> 0; consequently 

r (u) = -5- + ~ + (4) 

(Y(U) is the logarithmic derivative of the function f(U), i.e., equals the tangent of the 
slope of the graph of f(U) constructed in a logarithmic scale). 

Let us examine the physical meaning of the quantities in the expression for Y(U). We in- 

troduce the notation Uel a = 2mU/M, Urc = Qrcsrc/Qts, U e = Ee(NQts) , U T = kT. Then 

B Uela@ K r c  C 1 ~ Qi 
- - =  ~ - A - =  t • ' 

A "l~U~@UelaUr@~c -~U~ , UelaUrq-~cUT ~ ()is 

where U e is the characteristic magnitude of the electron energy increment in an electrical 
field between two collisions with molecules, Uel a, Urc are characteristic magnitudes of the 
energy lost by an electron in an elastic collision and in a collision with excitation of rota- 
tion, and U T is the thermal energy of the gas molecules. 

The solution (4) is obtained under the assumption 

Y(U)>>I~/U~. ( 5 )  

It is seen from (4) that Y(U)~ B/A, Y(U) > vr~ and at the same time Y(U) < B/A + ~C/A. This 
means that it is necessary to satisfy condition (5) so that at least one of-the quantities 

eUmin (Uela+ Vrc) U,, in 
r = - -  '" , Umin = ra in  {Ui}, 

A t 2 + UelaUT _1_ i V e UrcU T 

2 Umin 

= Ot~ 1--3 v~ + ~la u. + Vr=U , 

would be much less than unity. 

Presented in Fig. i are graphs of the functions a and ~ for a Cold plasma (T = 300 K) 
of pure carbon dioxide for values of the E/N ratio characteristic for electron-ionization CO 
lasers: i) 0.707-10 -16 and 2) 0.5"10 -16 V'cm 2. Represented in Fig. 2 are the dependences Qi(U) 

604 



from [Ii] modified according to [12] and used in the computations. The effective excitation 
sections of the rotational degrees of freedom are taken exactly the same as in [12]. 

It is seen from Fig. 1 that for given values of the parameters in the domain where the 
influence of the inelastic collisions is substantial, the inequality (5) is satisfied. In 
the prethreshold domain (U ! 0.3 eV) a noticeable difference in the values of Y(U) calculated 
by means of (4) from the exact value can be expected since the approximation (3) is not valid 
in this domain. 

Displayed in Fig. 3 are the dependences Y(U) obtained by means of (4) (solid lines) and 

by a numerical solution of (i) (dashed lines) for E/N = 0.707"i0 -z6 0 5"10 -16 0.354.10 -z6 
V'cm 2 (curves 1-3). It is seen that good agreement holds everywhere except in the prethresh- 
old domain. However, the extent of this domain is relatively small and since the integral 
of Y(U) is in the expression for the distribution function, it can then be expected that its 
influence on f(U) will be negligible. 

Shown in Fig. 4 are graphs of the function f(U) (the notation is the same as in Fig. 3). 
It is seen that despite the sufficiently rough approximation (3), good agreement holds be- 
tween the results. The accuracy of the solution in the prethreshold domain can be raised if 
an approximation of the integral that uses the smallness of the quantity UiY(U) 

U+U~ U+U~ U+U~ 

[ C~/dU~/(U) e-(Ur Y(U) .[ CidU~/(U)[I--(U~--U)Y] .[ CidU 
u u 

is taken instead of the approximation (3). Then 
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r ( u )  = 

U+U i 

U 
U+U~ 

L, 

The summation must here be performed only over those i for which YU i ~ i, which requires 
additional analysis. In practice it usually turns out to be sufficient to take one term of 
the sum corresponding to the minimal value of U i. 

As already mentioned above, when higher accuracy is required, the approximate solution 
obtained in this paper can be used as the initial approximation f1(U) in the iteration process 

[3], and the next approximation will be Y(U)= B +  f - ~ - ~ E  

U 

The method described above can be extended to the case when the influence of collisions 
of the second kind must be taken into account. The equation for f(U) here has the form 

U+Ui U 

+ 8/ + dU - -  O _ y N j /  dU = O. 

U J U--Uj 

Going over  t o  t h e  v a r i a b l e  Y and app rox ima t ing  t he  i n t e g r a l  in the  t h i r d  component by means 
of (3), we obtain 

U 

~U ~ ~ Q_jNjU'/(U')dU'. In contrast to (4)the expression (7)is not explicit where B'=B / ) --" ~-~J 

since Y(U) must be known for U < U 0 to evaluate Y(U) at the point U = U 0. However, finding 
Y(U) and f(U) numerically in this case is much simpler than the solution for the • 
differential equation (6). 

Therefore, it is shown that the approximate method of computing the electron energy dis- 
tribution function is simple and efficient. It affords the possibility of a simple analysis 
of the influence of different processes and some of their parameters on the distribution func- 
tion and, respectively, on the macroscopic characteristics of a weakly ionized plasma and per- 
mits finding the electron distribution function with good accuracy for sufficiently small val- 
ues of E/N and the plasma temperature that is realized in many practical problems. 
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The perspectives for using pulsed-periodic CO2-1asers for dimensional machining (laser 
cutting, welding, and drilling) has stimulated experimental and theoretical studies for the 
reaction of pulsed-periodic (PP) radiation with metals. A thermohydrodynamic (TH) model was 
developed in [1-4] for deep melting by pulsed-periodic radiation. According to [1-4] movement 
of melt in the cavity is cyclic. Retention of the melt on walls occurs as a result of verti- 
cal melt acceleration during the vapor pressure pulse and subsequent retardation of its move- 
ment by gravitation and capillary forces. The average temperature in the optimum regime for 
reaction is close to the melting temperature T ~ T m. Equations for thermal balance within the 
model of a linear heat source and melt movement [1-4] make it possible to determine the optimum 
energy E and pulse frequency f, and to study their dependence on depth h, cavity radius a, 
beam displacement velocity v and target thermophysical properties, shape and duration of the 
radiation pulse. In particular, with prescribed cavity parameters a and h and velocity v the 
optimum laser pulse (LP) energy is only governed by its duration. 

Within the limits of the TH-model for deep melting by PP-radiation it was assumed a pri- 
ori that the required energy was put into the cavity and its absorption over the depth was 
uniform. The question remains open about whether radiation parameters are sufficient for melt- 
ing large thicknesses of metal taking account of radiation propagation through the plasma 
above the metal surface and within the deep melting channel. 

The plasma of optical breakdown above the metal surface may transform considerably the 
space-time structure of the laser pulse up to complete screening of the cavity. Currently 
the question of passage of a LP through a jet with different duration of pulses and the provi- 
Sional shape of them has not been studied sufficiently either theoretically or experimental L 
ly. However, the effect of the jet above the metal surface with deep melting may be avoided 
by reducing the pressure and selecting the surrounding gas and the provisional shape of the 
pulse. For example, for radiation pulses with a leading spike with an intensity exceeding 
the threshold for a light-detonation wave (LDW) a regime appears to be possible when the 
"tail" of radiation pulses passes through the LDW plasma channel and when its expansion leads 
to almost complete restoration of transparency. Limitations connected with the radiation 
propagation processes within the deep melting cavity and optical breakdown in a vapor-gas mix- 
ture in the channel are fundamental in character. 

Numerical calculation of C02-radiation propagation by the procedure in [5] in metal chan- 
nels with a shape close to that observed experimentally in welding with considerable tapering 
(~20) indicate that LP self-absorption at the walls of the channel in the absence of optical 
breakdown is small (at the level of 10%) and it does not provide uniform insertion of a signi- 
ficant part of the energy. 

One of the mechanisms for putting LP energy in effectively may be release of absorbed 
energy by the plasma within the deep melting cavity. With this approach limitations develop 
on the pulse duration ~u, and from the selection of optimum curves for energy and pulse repeti- 
tion frequency corresponding to different ~u, one is separated. 

*Deceased. 
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